
186 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

doi.org/10.35321/term27-08

Terminology as the Basis for Building
Engineering Feature-based Models

R i c a r d o E i t o B r u n

Universidad Carlos III de Madrid

A BST R ACT

Satellite operations require the combined use of different tools to support en-
gineering activities and to control the spacecraft. This communication is man-
aged by the Monitoring and Control System (MCS) that receives telemetry data
from the spacecraft and releases telecommands to keep the satellite’s attitude
and flight path. These complex systems are developed as open platforms that
can be extended and customised to support mission-specific requirements and
objectives. As a general rule, it can be stated that these software applications
are good candidates for implementing variability mechanisms in a structured,
planned way and that their functionality is a good candidate to analyse the fea-
sibility of applying feature-based modelling techniques. This paper describes
the use of terminology analysis to build a feature model to support require-
ments analysis for this type of software-based systems.

K E Y W O R D S : Technical terminology, Feature-based models, Aerospace engineering, Termi-
nology extraction

A N OTACI JA

Palydovų operacijoms reikalingi įvairūs įrankiai, skirti užtikrinti sklandų inži-
nerinį darbą ir valdyti erdvėlaivį. Šį ryšį valdo Stebėjimo ir kontrolės sistema
(SKS), kuri gauna telemetrinius duomenis iš erdvėlaivio ir duoda telekoman-
das, kad palaikytų palydovo padėtį ir skriejimo trajektoriją. Šios sudėtingos sis-
temos yra sukurtos kaip atviros platformos, kurias galima išplėsti ir pritaikyti
pagal konkrečios misijos reikalavimus ir tikslus. Galime teigti, kad paprastai
šios taikomosios programos gali būti naudojamos norint struktūruotai ir pla-
nuotai įdiegti variantiškumo mechanizmus, o jų funkcionalumas leidžia anali-
zuoti požymių modeliavimo metodikų pritaikymo galimybes. Šiame straipsnyje
aprašomas terminologinės analizės panaudojimas požymių modeliui, palaikan-
čiam reikalavimų analizę šio tipo programinėms sistemoms, sukurti.

E S M I N I A I Ž O D Ž I A I : techninė terminologija, požymių modeliai, aviacijos inžinerija, terminų
atpažinimas

187Terminologija | 2020 | 27

1 . I ntro d u ction
NASA glossary defines satellites as: “a free-flying object that orbits the

Earth, another planet, or the sun.1” Satellites are a type of spacecraft that
travels in a regular, clearly defined orbit around the centre of gravity of
another celestial body (Garner 1996: 4). Since the launch of the first
artificial satellites – Sputnik 1 on October 4th, 1957 and Explorer 1 on
January 31st, 1958, a large number of satellite missions have been launched
with different purposes: astronomical exploration, provision of communi-
cation and navigation services, earth observation, reconnaissance, and
scientific missions. Satellites are complex aerospace systems made up of
ground- and space-based elements: the spacecraft must be operated by a
controlling element on Earth and remain in contact with it. Today, sci-
entific progress and services for users depend on satellites and satellite
constellations. Relevant examples include the Hubble Space Telescope
(HST), navigation systems like GPS (Global Positioning System), GLONASS
and the European Galileo, UARS (Upper Atmosphere Research Satellite)
or GOES (Geostationary Operational Environment Satellite). The total num-
ber of satellites launched since 1957 – according to the US SSN2 cata-
logue – Is close to 18200; UNOOSA’s 2017 Index of Objects Launched
into Outer Space reports 4635 satellites currently orbiting the planet, with
an increment of 357 satellites (8.95%) concerning the previous year3. The
purpose of this article is to demonstrate the need of applying terminol-
ogy management and extraction to support the development of feature-
based models to organize the concepts that describe the functions of the
software applications used for satellite monitoring and control.

Satellites are classified by purpose and type of orbit. The purpose refers
to the services the satellite is intended to provide. Regarding the orbit, a
distinction is made between Low Earth Orbit (LEO), Medium Earth Orbit
(MEO), and Geostationary Orbit (GEO). LEO satellites – used for science
and Earth observation – follow an elliptical orbit; as their visibility from
ground stations is limited, data are stored on-board and sent to the ground

1	 See https://www.grc.nasa.gov/www/k-12/TRC/laefs/laefs_s.html#satellite [accessed 2020-08-01].
2	 The US Space Surveillance Network is in charge of the detection, tracking, cataloguing and identification

of artificial objects orbiting the earth. The catalogue is available at: https://www.space-track.org/#/ssr
[accessed 2020-08-01].

3	 United Nations Office for Outer Space Affairs. See https://www.pixalytics.com/sats-orbiting-earth-2017/

188 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

stations when the aircraft becomes visible. GEO satellites are used for
telecommunication and meteorological purposes; telecommunication sat-
ellites receive radio frequency (RF) signals from the Earth, amplify them,
shift their frequency, and transmit them back to the Earth. They orbit
36000 km above the Equator (in the same plane), and their rotation is
synchronous with the rotation of the Earth, staying above the same point
at the Equator all the time)4. Similar to satellites, deep space scientific
missions also need similar monitoring and control for telecommand, and
telemetry reception.

Satellite missions require dedicated staff to complete real-time, con-
tinuous monitoring of the status and position of the satellite. Mission
control is the set of tasks executed after launch by operation engineers
with the help of software applications, and involves the exchange of data
between the ground and space segments for monitoring and control the
status of the satellite’s onboard subsystems. In scientific missions, it is
also necessary to receive the information from the satellite payload and
deliver it to the end-users (scientific community). Typical functions ex-
ecuted during mission control include the reception and analysis of te-
lemetry, telecommanding, and tracking. Telemetry is the data transmitted
from the satellite to the Earth informing of the status and conditions of
the satellite and its subsystems. Telecommands are the orders transmitted
from the ground to the spacecraft to configure and operate it. (Uhlig,
Sellmaier, and Schmidhuber 2015: 232). Tracking and station keeping,
also known as ranging, consists of the monitoring and determination of
the flight path and position using RF techniques and signals.

From a software engineering perspective, satellite control requires dif-
ferent applications and tools for flight dynamics, mission planning, telem-
etry and telecommanding, network control and routing, as well as inter-
faces between them. This complexity has led to the provision of different
solutions by space agencies. One of the most relevant milestones in the
development of MCS software was the decision of the ESA Ground Systems
Engineering department to develop and license to the European industry
a set of software applications distributed under the name MICONYS®

4	 GEO satellites are distributed in a limited area in space. Orbit slots are assigned by the International
Telecommunication Union (ITU) to avoid collisions, a risk related to the space debris topic that is receiv-
ing greater attention today.

189Terminologija | 2020 | 27

(Mission Control System). MICONYS and its SCOS-2000® component
are probably the best-known examples of this ESA’s policy for software
development and innovation and technology transfer (Kaufeler, Jones and
Karl 2001). SCOS-2000 supports telecommanding, telemetry reception,
display, and archival. SCOS-2000 was the result of the experience acquired
by ESA in the development and operation of previous similar systems:
MSSS, SCOS-1, and SCOS-2. Today, ESA is developing the new MCS
system, aimed to replace SCOS-2000 in the future. Its name is European
Ground Systems – Common Core (EGS-CC). Similar to SCOS, the project
has the purpose of developing a common infrastructure to support the
monitoring and control of space missions in the pre- and post-launch
phases, using modern technologies and service-oriented architectures (Pec-
chioli et al. 2012). The development of EGS-CC is not only under ESA
responsibility: European national space agencies (CNES, UK Space Agen-
cy, and DLR) and industrial companies (AIRBUS Defence and Space, Thales
Alenia Space and OHB Systems) are part of the project.

Besides ESA projects, there are other initiatives aimed to develop a
generic MCS software system. NASA has completed similar projects, most
of them in-house developments. The Goddard Space Flight Centre devel-
oped two systems, ITOS and ASIST, for managing missions like WMAP
(Wilkinson Microware Anisotropy Probe), IMAGE (Imager for Magnetopause-
to-Aurora Global Exploration), EO-1 (Earth Observing 1), ST-5 (Space
Technology 5), SDO (Solar Dynamics Observatory) or LRO (Lunar Recon-
naissance Orbiter) (Pfarr et al. 2007).

In all these cases, we are dealing with a complex system that needs to
implement different functions that can be activated or not depending on
the satellite and the mission’s characteristics. Due to that, these software-
intensive systems are good candidates to be developed using product-lines
and feature-based modelling techniques, which rely on a clear and well-
organised organization of concepts to understand the domain and system
needed capabilities.

2 . F eature -based modelling
as an organi zation of concepts

Feature-based modelling is one of the techniques applied in software
product-line engineering, a discipline for building reusable software pro-
grams that became popular at the end of the nineties. SPLE intends to

190 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

build reusable components and artefacts that can be later combined to
build products suited to the needs of a specific client and context. Expe-
riences in SPLE are widely documented in the professional and aca-
demic literature. Capilla (2013) included several case studies where SPLE
was applied with success: Boeing’s operational, mission-critical flight pro-
grams for avionics and cockpit functions, Bosch’s engine-control software
for gasoline systems, Hewlett Packard’s printer software, Toshiba’s power
generation, and transmission equipment and General Motors’ control soft-
ware for powertrains. The benefits of software product lines (SPL), ac-
cording to Apel et al. (2013: 9), include the tailoring of software products
to the specific needs of the clients, reduced cost – as a set of reusable
assets can be combined in different ways to generate new products -,
improved quality and time-to-market.

Features and feature-based modelling are relevant concepts in the de-
velopment of SPL. ISO/IEC/IEEE 24765:2010, Systems and software
engineering — Vocabulary, offers a general definition of features, taken from
IEEE Std 829:2008 IEEE Standard for Software and System Test Docu-
mentation: “A distinguishing characteristic of a system item. NOTE: includes
both functional and non-functional attributes such as performance and reus-
ability.” Kang and Lee (2013, 28) define features as “abstract concepts
effectively supporting communication among diverse stakeholders of a product
line, and therefore, it is natural and intuitive for people to express commonal-
ity and variability of product lines in terms of features.”

Features serve different purposes in the product ideation and develop-
ment process. They are means to communicate the product characteristics
and support the identification of requirements; they are also the concepts
that guide design and implementation decisions.

The development of a product-line comprises two complementary life
cycles:

•	 Domain engineering, and
•	 Application engineering.

IEEE 1517-2010 standard defines domain engineering as: “Life cycle
consisting of a set of processes for specifying and managing the commonal-
ity and variability of a product line. Domain engineering analyses the
domain of a product line and develops a set of reusable artefacts. These
artefacts include software requirements, design elements, test cases and

191Terminologija | 2020 | 27

procedures, user documentation, etc. Domain analysis can be seen as a
sort of requirements engineering for the whole product line, including
the identification of anticipated variability. The main artefact generated
by domain analysis is the feature model that will specify and describe the
products within the line.

Feature modelling is a diagramming technique that was introduced in
the nineties with the FODA (Feature-Oriented Domain Analysis) method-
ology. FODA provided primitives for representing structural relations
(composition, generalization, and specialization), optionality, alternative-
ness, and mutual dependencies. It was later reviewed by different authors
(Kang and Lee 2013: 30–31). Feature diagrams are the visual representa-
tion of feature models, where features are represented as boxes in a hi-
erarchical tree. Each node has an attached label with the name of the
feature. The hierarchical arrangement of the features creates parent-child
relationships. If a child feature is selected, its parent must also be se-
lected. Diagrams can make a distinction between mandatory and op-
tional features, and identify the combinations of features that are valid.
In particular, feature diagrams can represent:

•	 Abstract features, which are used to organise the features in the
tree but are not bound to implementation artefacts. They are rep-
resented with grey boxes.

•	 Concrete features, which correspond to implementation artefacts
and are represented with white boxes.

•	 Mandatory features, which have a filled bullet on top of the upper
border of their box.

•	 Optional features, which have a non-filled bullet on top of the up-
per border of their box.

•	 The need of selecting just one of the child features of a specific
parent (exclusive OR, XOR, or one-out-of-many). It is represented
with an empty arc at the lower border of the parent feature’s box.

•	 The possibility of selecting more than one child features of a spe-
cific parent (OR or some-out-of-many). It is represented with a
filled arc at the lower border of the parent feature’s box.

•	 Dependencies between features, represented by arrows with textual
annotations.

192 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

The diagram below shows a typical feature diagram with the conven-
tions described above:

Fig. 1. Feature diagramming example (Source: Gargantini 2015)

A feature model should include information additional to the diagram.
Apel et al. (2013: 27) indicate the possibility of adding these data:

•	 “Description of a feature and its corresponding set of requirements.
•	 Relationship to other features, especially hierarchy, order, and grouping.
•	 External dependencies, such as required hardware resources.
•	 Interested stakeholders.
•	 Estimated or measured cost of realizing a feature.
•	 Etc.”

The development of a feature model to represent the functional char-
acteristics of software applications for satellite control must start from a
clear understanding and modelling of the concepts that make up the
domain. To this end, activities related to terminology and terminography,
the identification of terms, concepts, and their relationships provide the
basis to build the target model.

193Terminologija | 2020 | 27

3 . Work M ethodolog y

The proposed feature-model has been completed following these steps:
•	 Identification and review of professional and academic literature

published in this area. This involves searching for information
about the approach followed in aerospace projects led by entities
like ESA (European Space Agency) or NASA (National Aeronautics
and Space Administration).

•	 Development of a glossary based on the analysed literature, apply-
ing terminology management techniques to record information
about terms, relationships between them, definitions identified in
the documents, and the context where the terms are used.

•	 Creation of a feature-based model that represents the functions of-
fered by satellite monitoring and control software applications, us-
ing the glossary as a basis.

The inputs used to identify terms included a subset of technical docu-
ments that describe the selected product: operation manuals, white papers,
and training materials. The feature model is a hierarchical tree of features
marked as mandatory or optional, with dependencies between them. In
the case of the software application under analysis, besides the identifica-
tion of optional and mandatory features, additional product line variabil-
ity requirements were identified. In particular, some of the functions
supported by the software under analysis require overwriting or custom-
izing existing code. The identification of these variability cases was made
with the support of experts who develop their activity in the development
and customization of this type of software application. Personal interviews
were made to collect that information.

The tool selected to create the feature model and diagrams is FeatureIDE5.
This is an open-source tool based on Java and Eclipse, developed by staff
at the Otto-von-Guericke-Universität Magdeburg. With FeatureIDE, it is
possible to create a feature model using a graphical editor, mark features
as mandatory, optional, or abstract, and build the hierarchical tree. Once
the feature model is built, you can create different configurations: selec-
tions of features that will be used to generate the target software applica-

5	 See https://FeatureIDE.github.io/. Last checked: 01-03-2018.

194 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

tion source code. Unfortunately, the tool does not provide capabilities to
manage terms or terminology units, which makes necessary the use of
complementary tools.

Fig. 2. FeatureIDE (created by the author)

4 . Presentation of results and discussions

This section summarizes one section of the feature model for Mission
Control Systems (MCS) software applications. The analysis of the concepts
extracted from the documents led to an organization of the system func-
tionalities into these areas:

•	 Desktop and Session Management, which provides the func-
tions to log in, start a session, and launch the different applica-
tions. In the case of managing multiple satellites, the user will be
able of switching between satellites’ workspaces.

•	 Telemetry chain, which includes Telemetry processing,
Alarm Manager, and Telemetry display.

195Terminologija | 2020 | 27

•	 Telecommands chain, which includes Telecommands up-
link, Manual stack, Scheduled stack, and Telecommands
history.

•	 TT&C/TCR Bridge, which provides visibility and control on the
interface with the ground station for Telemetry, Command, Rang-
ing (TCR) and Antenna Pointing data flows.

•	 Events Log, which records events identified during the system op-
erations and lets operators browse and search the entire history of
events.

•	 On-Board Memory Management, which provides facilities for
managing (downloading, editing, and uplinking) the spacecraft’s
memory image.

The analysis of the documentation and terms lead to the creation of
feature models for these functions of the system. The particular case of
Telemetry management is summarized as an example. It can be observed
how definitions based on existing literature and technical documentation
are provided for the identified features:

The term telemetry chain	refers to the different processes involved in the
processing of telemetry: reception from the TT&C, packetization, archive,
and distribution to consumer applications:

•	 Telemetry packetization. MCS takes the telemetry source pack-
ets based on the telemetry packet standard, adds metadata (e.g. the
telemetry stream quality), and converts them into one or more
MCS telemetry internal packets. The criteria for the generation of
packets from the incoming data may change depending on the sat-
ellite, mission, and BBE protocols.

•	 Packets quality check. MCS checks continuously the quality of
the telemetry using checks performed either by the TT&C or by
MCS itself. Telemetry quality metadata are appended to each inter-
nal packet. Depending on the result of those checks, the packet
can be classified as suitable for processing (GOOD) or not suitable
for processing (BAD). Telemetry drops shall also be identified dur-
ing the process.

A typical quality check is the Frame sequence check that assesses
whether the frames are received in sequence or not.

196 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

Events are raised in case these checks are not satisfied. The op-
erator can select the behaviour to apply when BAD telemetry
frames are identified (process or discard them).

•	 Time quality checks. These checks verify whether the time re-
ported by the TT&C for each telemetry stream and the MCS local
times are not too far. The difference between the current MCS
time and the time tag in the telemetry frame (set by the ground
station upon the reception of the frame), is within a configurable
time window. Event messages are raised if these checks fail. Time
quality checks require the time-stamping of the telemetry packets.

•	 Telemetry decommutation, which extracts telemetry parameter
samples from the packets6. It involves parameter extraction, bit de-
coding, calibration, out of range checking, validity checking, and
parameter dating.
o	 Telemetry parameter extraction locates and extracts the raw

values of telemetry parameters from the packets. Raw values are
usually signed, unsigned integers, or floating-point numbers.
This process is trivial for fixed telemetry as all the required in-
formation about the parameter location is available at the satellite
MIB, but is more complex with programmable telemetry.

o	 Bit decoding obtains the raw value from the value encoded in
the telemetry packet. In a typical situation, the raw value match-
es the one encoded in the packet, but there are cases in which
bit- (such as bit reversal or two’s complement) or byte-based
transformation is needed.

o	 Derived or synthetic parameters. They are not acquired from
the spacecraft but algorithmically derived at the ground using ac-
quired telemetry parameters as operands. They are calculated
with formulas written in scripting languages. They are calculated
before calibration, validity checks, and parameter dating.

A special type of derived parameter is hardcoded derived pa-
rameters (HCDP), written in low-level programming languages

6	 The parameters may be synchronous (downlinked in telemetry as soon as sampled on-board) or asyn-
chronous (not downlinked in telemetry as soon as sampled on-board, but stored in on-board memory
and downlinked afterwards). Parameters are usually sampled and encoded once or several times per
format, with the exception of sub commutated parameters, which are not sampled and encoded in all
formats and super commutated parameters, which are sampled and encoded multiple times.

197Terminologija | 2020 | 27

like C++, Fortran, or C. Their modification requires the recom-
pilation of source code.

o	 Telemetry parameter dating gives a date to the parameter
samples, using the time of the packet that contains them and
adding an offset as specified in the satellite MIB.

o	 Out of range (OOR) control analyses whether the raw value
of a telemetry parameter is outside of the defined calibration
range. Out of range telemetry parameters are stated invalid with
category OOR. OOR is used to assess the validity of the telem-
etry parameter, and let know whether its value is useful or
meaningless.

In addition, out of range parameters must be displayed and ac-
knowledged by the operators. Other conditions to declare a param-
eter as invalid include: the parameter is expired, or – in the case of
derived parameters -, they were calculated using invalid parameters.
Whatever the case, the telemetry parameter invalidity metadata
shall detail the reason for this status.

•	 Calibration of telemetry parameters transforms their raw val-
ues into a human-readable form (engineering or calibrated values
with the units that correspond to the physical magnitude). Calibra-
tion can be made using different methods:
o	 Numerical or linear discrete calibration: linear interpolation

is used from a calibration curve made up of (X, Y) pairs, where
X stands for the raw value and Y for the engineering value.

o	 Textual, digital, or status calibration: it associates text
strings to parameters’ raw value ranges. Textual values can be ob-
tained from discrete values or a range of them. A simple exam-
ple is the ON / OFF status of the on-board units, which could
be obtained from a one-bit parameter where 0 means OFF and
1 means ON.

o	 Polynomial Calibration: it uses an up to fifth-degree polyno-
mial to translate raw values into engineering values.

Without going into more details on the extracted features (just a subset
are described to show how their identification requires sound terminol-
ogy work), the next diagram presents the main features identified for this
functional area:

198 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

Fig. 3. TM Processing – Features Fig 1: FeatureIDE (created by the author)

5 . Conclusions
This paper describes the development of a feature model for satellite

control software applications, using as inputs technical documents (op-
eration manuals, white papers, and training materials) that describe the
functionalities of the type of system under study. The first step is the

199Terminologija | 2020 | 27

identification and extraction of terms through the inspection of the doc-
uments, identifying definitions for them through the context where they
are applied. This collection of terms is further analysed to identify features,
that were arranged in the feature model and diagram attending to func-
tional criteria, within twelve main categories: session management, ground
station connection management, telemetry processing, telemetry data
display, telecommands processing, mission archive, etc.

For each functional area, the description of the main concepts and the
characteristics that must be supported by a software system were sum-
marized and represented in feature diagrams created with the FeatureIDE
tool. The definitions and the context of use were also the basis to estab-
lish the relationship between the features and for the identification of
variability opportunities. Three main reasons for variability were identified:

•	 Mission specific configuration parameters usually managed with
public configuration files.

•	 Selection of optional features, depending on the type of the mis-
sion: e.g., position-based telecommands that are characteristics of
LEO satellites for Earth observation.

•	 Customization of the mission-specific services that extend the basic
services and functions defined in telemetry and telecommands
standards like PUS.

The work demonstrates the need of applying terminology-related tech-
niques to collect, analyse, and document the meaning of terms, and to
extract relationships that can be later used for different purposes. In the
case of feature-based engineering models, terms constitute the basis to
describe the functions of the software and systems unambiguously and to
identify the characteristics of complex systems. Consistency in the use of
terms is also needed to ensure that the different agents involved in sub-
sequent engineering tasks (design, implementation, testing, etc.) share a
common understanding of the system features, avoiding errors caused by
a poor definition of the domain area the system is intended to support.

R eferen c es

Apel et al. 2013: Feature-Oriented Software Product Lines: Concepts and Implementation, Berlin: Springer.
Capilla Rafael 2013: Variability Scope. – System and Software Variability Management: Concepts, Tools, and

Experiences, Berlin: Springer, 43–56.
CCSDS 520.0-G-3 (Mission operations services concept), December, 2010.
Clements, Paul C. and Northrop Linda M. 2002: Software Product Lines: Practices and Patterns, Boston: Ad-

dison-Wesley Professional.
Gargantini Angelo 2015: Generating Tests for Detecting Faults in Feature Models. – 2015 IEEE 8th Interna-

tional Conference on Software Testing, Verification and Validation, ICST 2015 – Proceedings.

200 Ricardo Eito Brun		 Terminology as the Basis for Building
				 	 	Engineering Feature-based Models

Garner John T. 1996: Satellite Control: a Comprehensive Approach, Chichester: John Wiley and sons, xv.
Jones, M; Ssrensen E. M. and Wolff T. 1993: “A review of mission planning systems”. – JPL SpaceOps 1992:

Proceedings of the Second International Symposium on Ground Data Systems for Space Mission Operations
(SEE N94-23832 06-66), 219–224. Available at: https://ntrs.nasa.gov/search.jsp?R=19940019393

Kang Kyo-Chul and Lee H. 2013: Variability Modelling. – System and Software Variability Management: 	
Concepts, Tools, and Experiences, eds. R. Capilla, J. Bosch and K. C. Kang, Berlin: Springer, 25–42.

Kaufeler J.-F., Jones M., Karl H.-U. 2001: Promoting ESA Software as a European Product: The
SCOS-2000 Example. – ESA Bulletin 108, 72–77.

Pecchioli Mauro et al. 2012: Objectives and Concepts of the European Ground Systems Common Core
(EGS-CC). – SESP 2012: Simulation and EGSE facilities for Space Programs, ESTEC Noordwijk, 25–27
September. Available at: http://www.egscc.esa.int/downloads/20120925_SESP_2012_egscc_objectives_
and_concepts.pdf.

Pfarr Barbara et al. 2007: Proven and Robust Ground Support Systems – GSFC Success and Lessons
Learned. (2008). – IEEE Aerospace Conference, paper # 1219, version 6. Available at: https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20080045437.pdf

Uhlig Thomas; Sellmaier Florian and Schmidhuber Michael 2015: Spacecraft Operations, Wien: Springer.

T ermino logi j a kaip inžinerini ų požymi ų mode l i ų k ū rimo pagrindas

S a n t r a u k a

Palydovai yra erdvėlaiviai, kurie skrieja aplink kito dangaus kūno gravitacijos centrą
pastovia, aiškiai apibrėžta orbita (Garner 1996: 4). Nuo pirmųjų dirbtinių palydovų pa-
leidimo – „Sputnik 1“ 1957 m. spalio 4 d. ir „Explorer 1“ 1958 m. sausio 31 d. – buvo
paleista daug palydovų misijų, kuriomis siekta skirtingų tikslų: astronominiai tyrimai,
komunikacinių ir navigacinių paslaugų teikimas, Žemės stebėjimas, žvalgyba ir moksli-
nės misijos. Palydovai turi būti valdomi Žemėje esančiu valdymo elementu ir palaikyti
su juo ryšį. Šį ryšį valdo Stebėjimo ir kontrolės sistema (SKS), kuri gauna telemetrinius
duomenis iš erdvėlaivio ir duoda telekomandas, kad palaikytų palydovo padėtį ir skrieji-
mo trajektoriją. Galime teigti, kad šios taikomosios programos gali būti naudojamos no-
rint struktūruotai ir planuotai įdiegti variantiškumo mechanizmus, o jų funkcionalumas
leidžia analizuoti požymių modeliavimo metodikų pritaikymo galimybes.

Požymiai yra naudojami norint perduoti produkto charakteristikas ir palaikyti reikala-
vimų nustatymą. Jie taip pat naudojami priimant projektavimo ir įgyvendinimo sprendi-
mus. Straipsnyje aprašomas požymių modelio sukūrimas remiantis šios srities profesinės
ir akademinės literatūros apžvalga, žodynėlio, nurodančio ryšius tarp terminų, sudarymu
ir požymių modelio, apimančio taikomųjų palydovų stebėjimo ir kontrolės programų
funkcijas, sukūrimu. Įvesties duomenys, skirti identifikuoti terminus, apėmė techninių
dokumentų, aprašančių pasirinktą produktą, pogrupį: valdymo vadovus, baltąsias knygas
ir mokomąją medžiagą. Požymius nurodančios sąvokos ir terminai yra išdėstyti hierar-
chinės struktūros principu, o tarpusavio sąsajoms naudojamas FeatureIDE įrankis.

Gauta 2020-09-07

Ricardo Eito Brun
Universidad Carlos III de Madrid
Calle Madrid, 126, 28903 Getafe, Madrid, Spain
E-mail reito@bib.uc3m.es

