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EXPLORING SCALED AIC 
WITHIN ENGLISH CLOSED 
COMPOUNDS

Anglų kalbos uždarųjų junginių  
(sudurtinių žodžių) skalės AIC tyrimas

ANNOTATION

The Akaike Information Criterion (AIC) is an established goodness-of-fit measure for 
selecting models in the analysis of empirical data. However, AIC is sensitive to sample 
size. Author’s previous research has shown that Scaled AIC, i.e. AIC divided by sample 
size, is an effective tool for assessing model fit and hierarchizing regression models. The 
present study explores further properties of this variable. The object of investigation are 
66 multiple regression models referring to the processing of closed (concatenated) English 
compounds taken from Gagné et al.’s (2019) Large Database of English Compounds 
(LADEC). In particular, Scaled AIC is juxtaposed to the English Lexicon Project (ELP) 
and British Lexicon Project (BLP) as sources of response times, the lexical decision and 
naming tasks, compound length, and transparency norms. One-way ANOVA, main effects 
analysis, and non-parametric tests are used as methods. The findings suggest that Scaled 
AIC is responsive to experimental design, the source of response times, and the lexical 
decision and naming tasks. At the same time, the results of this study offer empirical 
support for the validation of methods employed by Gagné et al. (2019).
	 KEYWORDS: 	English compounds, Scaled AIC, lexical decision, naming.

ANOTACIJA

Akaikės informacijos kriterijus (angl. AIC) yra pastovus modelių tinkamumo matas, 
taikomas empirinių duomenų analizei. Tačiau AIC yra jautrus imties dydžiui. Ankstesni 
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autoriaus tyrimai parodė, kad skalės AIC, padalytas iš imties dydžio, yra veiksminga 
priemonė modelio tinkamumui įvertinti ir regresijos modeliams hierarchizuoti. Šiame 
tyrime nagrinėjamos tolimesnės šio kintamojo ypatybės. Tyrimo objektas – 66 daugialypės 
regresijos modeliai, susiję su uždarųjų (sudurtinių) anglų kalbos junginių, paimtų iš 
Gagné’ės ir kitų (2019) Anglų kalbos sudurtinių žodžių (junginių) didžiosios duomenų 
bazės (angl. LADEC), apdorojimu. Pirmiausia AIC sugretinamas su Anglų kalbos žodyno 
projektu (angl. ELP) ir Britų kalbos žodyno projektu (angl. BLP), kaip atsako laiko, leksinių 
sprendimų ir įvardijimo užduočių, junginių ilgio ir skaidrumo normų šaltiniai. Naudojami 
metodai – vienpusė ANOVA (angl. Analysis of variance), pagrindinių rezultatų analizė ir 
neparametriniai testai. Išvados rodo, kad skalės AIC reaguoja į eksperimentinį projektą, 
atsako laiko šaltinį ir leksinių sprendimų bei įvardijimo užduotis. Tuo pačiu šio tyrimo 
rezultatai suteikia empirinį pagrindą Gagné’ės ir kitų (2019) taikomų metodų patvirtinimui.
	 ESMINIAI ŽODŽIAI: 	anglų kalbos junginiai (sudurtiniai žodžiai), skalės AIC, leksinis 

sprendimas, įvardijimas.

1.	 THE LARGE DATABASE  
OF ENGLISH COMPOUNDS  
(LADEC: GAGNÉ ET AL. 2019)1 

The Large Database of English Compounds (LADEC:  Gagné et al. 
2019) is the largest existing database of compound words. It contains over 
8000 nonspaced (“closed” or “concatenated”) compounds (=nouns) selected 
from various sources including, among others, the CELEX database (Baayen 
et al. 1995), the English Lexicon Project (ELP; Balota et al. 2007), the British 
Lexicon Project (BLP;  Keuleers et al. 2012), the British National Corpus 
(BNC), and Wordnet. From the full set of LADEC entries, 7,804 compounds 
can be uniquely parsed into two free morphemes constituents.2 A vast variety 
of compounds is considered, for instance noun-noun compounds, e.g. buttercup, 
shipyard, compounds with a second constituent derived from a verbal stem, 
e.g. pacemaker, painkiller, etc. (for definitions of compound classes see Lieber 
2004: 46). The first non-head constituent refers to a wide range of grammatical 
categories. Figure 1 contains a brief sample of LADEC entries.
Gagné et al.’s (2019) multiple-regression models include a wide range of 

predictor (=independent) variables, such as compound length, bigram frequency 

	 1	 This section was adopted from Chariton Charitonidis (2022) with slight alterations.
	 2	LADEC includes plurals of already listed compounds as separate entries.
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at the morpheme boundary, family size, word frequency, probability and 
association (vector-based) measures, emotional/sentiment norms computed 
from participant ratings, etc. The log response times for the compounds from 
ELP (lexical decision, naming) and BLP (lexical decision) are used as dependent 
variables. For the most part, compound length (number of characters) and log 
compound (=word) frequency from the SUBTLEX-US corpus (Brysbaert, New 
2009)3 and BNC (BLP) are used as control variables. In Gagné et al.’s (2019) 
models, the predictor variables mentioned above had significant effects on 
lexical decision and naming times.

FIGURE  1. LADEC entries: sample

afterlife
aircraft
ashtray

daydreaming
dimwit
drawback

pacemaker
padlock
painkiller

backboard
ballplayer 
buttercup

earthquake
egghead
eyebrow

shipyard
shoelace
shotgun

caretaker
castaway
crossfire

offspring
outcasts
overdrive

textbook
throwback
turnaround

The primary focus in Gagné et al.’s (2019) study was placed on various 
measures of semantic transparency. Gagné et al. (2019) asked participants to rate 
compounds considering how predictable the meaning of the compound is from 
its parts (meaning predictability ratings, compound-based) and how much of 
the meaning of each of the constituents is retained in the compound (meaning 
retention ratings, constituent-based). The authors found that the distribution 
of transparencies for the second constituent was much more peaked and higher 
than the distribution of transparencies for the first constituent (MC1: 64.80 [SD: 
19.59] vs. MC2: 71.00 [SD: 16.46]. N = 8115). However, the rating for the 

	 3	The SUBTLEX-US corpus is a 51-million-token corpus based on subtitles from US films and 
television programs. Several recent studies have provided evidence indicating that frequency 
norms obtained from subtitles of movies and television programs tend to be more effective than 
those derived from printed texts when it comes to explaining the differences in lexical processing 
time and, in some cases, accuracy among native speakers of various languages (see Chen et al. 
2018: 2 and the references therein).
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first constituent was more strongly correlated with the rating for the entire 
compound than was the rating for the second constituent (c1~cmp: r = 0.75, 
p < .001 vs. c2~cmp: r = 0.66, p < .001. N = 429).4 Most notably, the meaning 
retention rating for the first constituent and the meaning predictability rating 
for the compound predicted all three types of response times, i.e. ELP lexical 
decision, BLP lexical decision, and ELP naming times.
To conclude, the peaked and higher distribution of transparencies for the 

second constituent and the first constituent’s better association with the 
compound’s meaning predictability appear to be immediately mapped onto 
the head operations in English compounds. The second constituent, i.e. the 
head, is a unit whose transparency is enhanced categorially and semantically 
(as for the semantic aspect, see the relations of entailment and hyponymy). 
The first constituent, i.e. the modifier, is the most critical factor in establishing 
compound reference. As a result, its transparency covaries with the transparency 
of the compound most strongly.5 

2.	 AKAIKE INFORMATION CRITERION (AIC)

In 1973, Hirotugu Akaike developed a method to estimate the relative 
expectation of Kullback-Leibler distance (Kullback 1959) using Fisher’s maximized 
log-likelihood (Fisher 1922; see also Aldrich 1997). This measure, commonly 
referred to as the Akaike Information Criterion (AIC; Akaike 1973), introduced a 
novel framework for selecting models in the analysis of empirical data, marking 
a significant paradigm shift (Burnham, Anderson 2002).
AIC is typically calculated as follows: –2lnL + 2k, in which ‘lnL’ refers to 

the maximized/full log-likelihood of the model and ‘k’ refers to the number 
of parameters including the constant. A smaller set of predictors is typically 
associated with more efficient models (models with a lower information loss). 
The lower (=more negative) the AIC value, the better the fit of the model. In 
this context, AIC penalizes, as a goodness-of-fit measure, the use of a large 
number of predictors that, potentially, result in higher AIC values (see the ‘+2k’ 
part of the AIC equation).

	 4	Steiger’s (1980) z test showed that this difference was significant, z = 27.71, p < .0001 (Gagné 
et al. 2019).

	 5	 By referring to previous research, Gagné et al. (2019) report that “the modifier (the first constituent 
in English) tends to play a larger role in the ease-of-relation selection during the processing of 
compounds and noun phrases.”
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AIC is sensitive to sample size. AICc, a corrected version of AIC, incorporates 
sample size through the formula 2k (k + 1)/(n – k – 1). However, it specifically 
addresses small sample sizes and is not recommended for models based on 
large sample sizes such as that in Gagné et al. (2019).6 It should be noted that 
researchers such as Kenneth P. Burnham & David R. Anderson (2002) do not 
offer a definitive solution for comparing AIC values of models fitted on both 
different and large sample sizes.7
In particular, Burnham & Anderson (2002: 80–85, 334–335) provide a 

comprehensive discussion of the implications of unequal sample sizes for model 
comparison. They argue that employing information criteria to compare models 
with different sample sizes can lead to misleading results. Similarly, as noted in 
an online discussion by Svetunkov in 2016 (see reference after the bibliography), 
all information criteria are based on the likelihood function that, in turn, 
depends on sample size. Specifically, as the sample size increases, the likelihood 
decreases. Consequently, information criteria will also increase in such cases.8

3.	 PREVIOUS RESEARCH

In Charitonidis (2022) the AIC values for 44 multiple regression models with 
different combinations of emotion variables (valence, arousal, and concreteness 
for (a) words and (b) word contexts) were divided by sample size (N) to yield 
Scaled AIC (AIC/N) values.9 Subsequently, these values were utilized to assess 

	 6	 For further information on AICc, the reader is referred to Burnham & Anderson (2002: 374–380).
	 7	One of the solutions that Burnham & Anderson (2002) propose refers to the transformation of the 

AIC values to “Akaike weights” that are defined as “the relative likelihood of the model, given the 
data” (Burnham, Anderson 2002: xiii; see also Wagenmakers, Farrell 2004).

	 8	 Available at: https://stats.stackexchange.com/questions/94718/model-comparison-with-aic-based- 
on-different-sample-size [accessed 16.06.2023]. The reader can comprehend Svetunkov’s 
statement by substituting different values for the ‘lnL’ component in the AIC equation, while 
maintaining the ‘2k’ component constant. A decrease in the lnL value will result in a higher, i.e. 
inferior, AIC value.

	 9	 In the literature, Scaled AIC is also referred to as “mean AIC”. According to Svetunkov (personal 
communication), the practice of dividing the Akaike Information Criterion by the sample size 
is not novel. For instance, Hastie et al. (2009: 230–231) define AIC in a non-canonical manner, 
employing N as the denominator in the formula. While this deviation from the conventional 
AIC formula is not without its critics, it remains a prevalent approach, as exemplified by its 
inclusion in the statistical software package Stata. For instance, Stata reports “AIC divided by N” 
in its model output, as evidenced by various examples available online (Gratitude is extended to 
I. Svetunkov for providing this information).
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and compare the models’ goodness-of-fit. The insertion of key predictors into 
global, i.e. general, models showed that the BLP lexical decision times called 
for a better goodness-of-fit than the ELP lexical decision times. The fit of the 
ELP naming models fell within the range of those observed for the ELP and 
BLP lexical decision models. Most notably, context concreteness for the second 
constituent emerged as a significant predictor in all models with SUBTLEX-US 
frequency, across lexical decision and naming.
In Charitonidis (2024), all significant coefficients from the global models with 

SUBTLEX-US frequency were juxtaposed to the hyponymy variable (Gagné 
et al. 2020). It was found that models including both hyponymy and context 
concreteness for the second constituent were always associated with the lowest 
(=best) Scaled AIC value as compared to nested, i.e. reduced, models omitting 
either of these two variables. The subsequently applied Wald tests showed that 
nested models, always referred to a significant reduction (=deterioration) of the 
coefficient of determination (R2). Tables 1 and 2 display the Scaled AIC values 
and the results of the corresponding Wald tests, respectively.

TABLE 1 .  	 Scaled AIC values for nested models omitting hyponymy (‘Model 2’) 
or context concreteness for the second constituent (‘Model 3’) from full 
models (‘Model 1’) to predict English Lexicon Project (ELP) lexical 
decision (LD) times, British Lexicon Project (BLP) lexical decision 
times, and ELP naming times

Model Scaled AIC AIC N
ELP LD
1 -3.36281a -3557.85 1058
2 -3.30375 -4169.334 1262
3 -3.34845 -3700.038 1105

BLP LD
1 -3.79552a -2903.574 765
2 -3.76618 -3920.592 1041
3 -3.76718 -2987.37 793

ELP naming
1 -3.58686b -7396.108 2062
2 -3.54304 -8418.27 2376
3 -3.58379 -7389.784 2062
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a. Predictors: (Constant), hyponymy judgement, length of compound, 
SUBTLEX-US frequency, representation valence (cmp), context concreteness 
(c2)
b. Predictors: (Constant), hyponymy judgement, length of compound, 

SUBTLEX-US frequency, context valence (cmp), context arousal (c1), context 
arousal (c2), context concreteness (c2)

TABLE 2. 	 Wald tests for nested models omitting hyponymy (‘Model 2’) or context 
concreteness for the second constituent (‘Model 3’) from full models 
(‘Model 1’) to predict English Lexicon Project (ELP) lexical decision 
(LD) times, British Lexicon Project (BLP) lexical decision times, and 
ELP naming times

Model R2 square F change df1 df2 p
ELP LD
1 .184a 47.506 5 1052 .000
2 -.004 4.562 1 1052 .033
3 -.010 13.175 1 1052 .000

BLP LD
1 .211a 40.479 5 759 .000
2 -.013 12.091 1 759 .001
3 -.015 14.007 1 759 .000

ELP naming
1 .288b 118.711 7 2054 .000
2 -.003 8.286 1 2054 .004
3 -.003 8.309 1 2054 .004

a. Predictors: (Constant), hyponymy judgement, length of compound, 
SUBTLEX-US frequency, representation valence (cmp), context concreteness 
(c2)
b. Predictors: (Constant), hyponymy judgement, length of compound, 

SUBTLEX-US frequency, context valence (cmp), context arousal (c1), context 
arousal (c2), context concreteness (c2)

In conclusion, two different effect-size measures, namely Scaled AIC and 
R2, hierarchized the same regression models identically while demonstrating 
the same preference for the best model. Thus, there is strong evidence that the 
Scaled AIC measure is a qualitative tool for assessing model fit.
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4.	 THE PRESENT STUDY

The present study builds upon the author’s previous research presented in 
section 3. The research subjects are 66 lexical decision and naming models for 
the English closed (concatenated) compounds built by Gagné et al. (2019). All 
models include SUBTLEX-US frequency as control variable. Our objectives 
are twofold and run in parallel. First, we assess the characteristics of Gagné et 
al.’s (ibid.) models. Second, we explore essential properties of the Scaled AIC 
measure.
The research questions are:
1. Is Scaled AIC sensitive to the model design in Gagné et al. (2019)? Which 

model groups are favoured?
2. What is the impact of the control variables ‘compound frequency’ and 

‘compound length’ on Scaled AIC?
3. How is morphological transparency related to Scaled AIC?
Our study is structured as follows: Section 5 provides an overview of our 

methods. Section 6.1  provides descriptive statistics for Scaled AIC referring 
to the models under consideration. Emphasis is given to the parametric versus 
non-parametric characteristics of model categories. Section 6.2  explores the 
relationship between the source of response times and the lexical processing 
tasks. Section 6.3 juxtaposes Scaled AIC to the control variables ‘compound 
frequency’ and ‘compound length’. In section 6.4 the significance levels of the 
transparency coefficients from Gagné et al.’s (2019) models are mapped onto 
the Scaled AIC values. The key findings are summarized in section 7, followed 
by a discussion of the results in section 8.

5.	 METHODS

Our general method was the comparative analysis of the main parameters and 
characteristics of Gagné et al.’s (2019) models, using Scaled AIC as the dependent 
variable. Independent variables included sample characteristics (e.g. response 
time source and the lexical processing tasks), study design (e.g. control variables), 
and the significance level of transparency coefficients, among other factors.
The specific statistical methods employed were as follows: (a) descriptive 

statistics pertaining to means and medians, along with the application of the 
Shapiro-Wilk test to assess the central tendency, variability, and distribution 
of Scaled AIC across different model categories and groups (sections 6.1 and 
6.2), (b) main effects analyses conducted for the source of response times 
(ELP/BLP) and the lexical processing tasks (lexical decision/naming) (section 
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6.2), (c) distinct ANOVAs performed on response time source and the lexical 
processing tasks, incorporating compound length as a covariate (section 6.3), 
and (d) utilization of the Kruskal-Wallis and the Jonckheere-Terpstra tests 
to explore differences among the ranks of ordinally-recoded coefficients for 
semantic transparency (section 6.4). For more information on methods, the 
reader is referred to the analyses in sections 6.1–6.4.

6.	 ANALYSES

6.1.	 Scaled AIC vs. model categories

The 66 AIC values from Gagné et al.’s (2019) multiple-regression models 
with SUBTLEX-US frequency as a control variable were divided by each 
model’s sample size to yield a set of 66 Scaled AIC values.
Table 3 below provides the descriptive statistics for Scaled AIC and Figure 

2 displays the corresponding boxplot referring to the ordered set of values.10 
There were no outliers in the sample. The skewness (Sk) and kurtosis (Ku) 
values were tolerable.11
The mean value for Scaled AIC was -3.50030. The standard deviation 

was 0.19052, that is the observations were relatively tightly clustered around 
the mean. The minimum and maximum values were -3.85502 and -3.15754, 
respectively. The median value was -3.55732, i.e. slightly lower than the mean 
value.12 The middle 50% of the data ranged between -3.66575 (first quartile, 
Q1) and -3.30959 (third quartile, Q3). Accordingly, the interquartile range 
(IQR) was 0.35616.

	 10	The lower or first quartile line of the box (Q1) marks the boundary below which the bottom 
25% of the data extends. Similarly, the upper or third quartile line of the box (Q3) marks the 
boundary above which the upper 25% of the data extends. The shaded area shows the boundaries 
of the middle 50% of the data or interquartile range (IQR), which can be computed by subtracting 
the first quartile from the third quartile (Q3-Q1). The horizontal line inside the box shows the 
median or middle quartile (Q2), i.e. the value that falls in the middle of the dataset.

	 11	With reference to the SPSS environment, the values between -1  and +1  for skewness and 
between -2  and +2  for kurtosis are generally considered acceptable for normal distribution 
assessment. It is worth noting, however, that skewness and kurtosis alone do not provide a 
conclusive proof of normality (see also the discussion on https://www.researchgate.net/post/
What_is_the_acceptable_range_of_skewness_and_kurtosis_for_normal_distribution_of_data).

	 12	 In line with this pattern, there was a small amount of positive skew in the data (0.494).
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TABLE 3. Descriptive statistics for Scaled AIC (full set)

Mean SD Min Max
-3.50030 0.19052 -3.85502 -3.15754
Median IQR Q1 Q3
-3.55732 0.35616 -3.66575 -3.30959

N=66. Sk=0.494, Ku=-1.101

FIGURE 2. Distribution of Scaled AIC (full set): Boxplot

It was expected that the full set of Scaled AIC values would not show the 
normal distribution because they encompassed different tasks (lexical decision, 
naming) and were derived from different sources of response times (ELP, 
BLP). The Shapiro-Wilk test and the Kolmogorov-Smirnov test confirmed 
our assumptions.13 In particular, the statistics for the Shapiro-Wilk test were 
W (66) = 0.90, p < .001, and the statistics for the Kolmogorov-Smirnov test 
were D (66) = 0.17, p < .001. It should be noted that the same full set did not 
exhibit a normal distribution, even after applying the natural logarithm and the 
square root transformations to the absolute values.
Table 4 below provides the descriptive statistics for Scaled AIC with reference 

to the main model categories in Gagné et al. (2019), i.e. ELP lexical decision, 
BLP lexical decision, and ELP naming (each group contains 22 models). Figure 
3 displays the corresponding boxplots. As can be seen, the means and medians 

	 13	The Kolmogorov-Smirnov test applied the Lilliefors Significance Correction.
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for BLP lexical decision and ELP naming referred to similar Scaled AIC values. 
ELP lexical decision referred to higher (=inferior) values that were, additionally, 
disjoint from the BLP lexical decision values.14 In summary, BLP lexical decision 
and ELP naming always called for better models than ELP lexical decision.

TABLE 4. Descriptive statistics for Scaled AIC by the main model categories

ELP lexical 
decision

BLP lexical 
decision ELP naming

Mean -3.25338 -3.62255 -3.62495
SD 0.06605 0.06778 0.08710
Min -3.35102 -3.75547 -3.85502
Max -3.15754 -3.52945 -3.50150
Median -3.27165 -3.62174 -3.61886
IQR 0.13762 0.13704 0.13758
Q1 -3.31025 -3.68840 -3.69419
Q3 -3.17263 -3.55136 -3.55662
Sk 0.274 -0.097 -0.559
Ku -1.444 -1.244 0.725
N 22 22 22

It was expected that the non-parametric profile of the full set of Scaled AIC 
values would be less likely to occur within the main model categories, i.e. the 
main combinations of response times and tasks. As will become apparent, this 
expectation was confirmed.
The Shapiro-Wilk test showed that the ELP lexical decision data deviated 

significantly from normality. In particular, we calculated a test statistic of 
W (22) = 0.90, p < .05.15
The BLP lexical decision data were normally distributed. The respective 

statistics were W (22) = 0.92, p > .05 (Shapiro-Wilk).

	 14	A t-test on the summary data for ELP lexical decision and BLP lexical decision (Table 4) indicated 
a highly significant difference between sample means, t = 18.296, p < .0001.

	 15	 It should be noted that a set of six ELP lexical decision models referred to Scaled AIC values 
near the maximum value of -3.15754, indicating the poorest fit in the entire dataset. These 
models contributed to a prominent peak towards the higher end of the distribution (ranging from 
-3.17304 to -3.15754), resulting in an almost bimodal distribution pattern. This observation is 
supported by a relatively high negative kurtosis value of -1.444.
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FIGURE 3. Boxplot representations of Scaled AIC by the main model categories

ELP lexical decision     BLP lexical decision

ELP naming

Similarly, the ELP naming data were normally distributed. The respective 
statistics were W (22) = 0.93, p > .05 (Shapiro-Wilk).
Summarizing, both the full set of models and the ELP lexical decision models 

were associated with a non-parametric distribution of Scaled AIC. On the other 
hand, the BLP lexical decision and ELP naming data were normally distributed. 
Let us now try to uncover the influence of individual factors on Scaled AIC.

6.2.	 Scaled AIC vs. response time source and tasks

Table 5 below contains the descriptive statistics for the Scaled AIC values 
for the groups categorized under the main factors ‘response times’ and ‘tasks’, 
i.e. (a) ELP response times, (b) BLP response times, (c) naming task and 
(d) lexical decision task. The ELP response times and the lexical decision task 
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are overarching groups referring to ‘lexical decision & naming’, and ‘ELP & 
BLP’, respectively. The groups ‘BLP’ and ‘Naming’ are identical to the model 
categories ‘BLP lexical decision’ and ‘ELP naming’, respectively that were 
already presented in Table 4 (section 6.1). Figure 4  displays the respective 
boxplot representations. 
As can be seen in Table 5, both ‘BLP’ and ‘Naming’ referred to (a) lower 

(=better) main and median values for Scaled AIC, and (b) smaller standard 
deviation (SD) and interquartile range (IQR) values, in contrast to the 
overarching groups ‘ELP response times’ and ‘lexical decision’.16 The same 
overarching groups have relatively high kurtosis values, i.e. -1.403 and -1.616, 
respectively (in the histograms for these groups – not given here – two clear 
peaks emerged, similar to that for a bimodal distribution of values). These 
patterns suggest that the Scaled AIC measure was uniquely associated with the 
well-defined experimental categories BLP lexical decision (see ‘BLP’ group) 
and ELP naming (see ‘Naming’ group).

TABLE 5. 	 Descriptive statistics for Scaled AIC regarding the groups categorized 
under ‘response times’ and ‘tasks’

Response times Tasks
ELP BLP Naming Lexical Decision

Mean -3.43917 -3.62255 -3.62495 -3.43797
SD 0.20286 0.06778 0.08710 0.19808
Min -3.85502 -3.75547 -3.85502 -3.75547
Max -3.15754 -3.52945 -3.50150 -3.15754
Median -3.42626 -3.62174 -3.61886 -3.44024
IQR 0.35152 0.13704 0.13758 0.36196
Q1 -3.62127 -3.68840 -3.69419 -3.63171
Q3 -3.26975 -3.55136 -3.55662 -3.26975
Sk -0.126 -0.097 -0.559 -0.006
Ku -1.403 -1.244 0.725 -1.616

44 22 22 44

	 16	Lower means and medians together with smaller standard deviation and interquartile range values 
indicate greater reliability and a reduced susceptibility to outliers or extreme values.
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FIGURE  4. Boxplot representations for Scaled AIC regarding the groups categorized 
under ‘response times’ and ‘tasks’

As with the entire set of Scaled AIC values discussed in section 6.1, it was 
expected that a non-parametric profile would be apparent for the overarching 
groups ‘ELP’ and ‘lexical decision’, not constrained by specific experiments. 
The normality tests confirmed our expectations.
With reference to the Shapiro-Wilk test, the Scaled AIC data for the ELP 

group deviated significantly from normality. We calculated a test statistic of 
W (44) = 0.91, p < .01. Similarly, the Scaled AIC data for the lexical decision 
group deviated significantly from normality. We calculated a test statistic of 
W (44) = 0.89, p < .001. 
Let us now proceed to the main effects analysis. The primary objective was to 

ascertain whether the BLP lexical decision and the ELP naming groups continue 
to predict better models when controlling for the effects of either group.
In the statistical tests to follow, the groups categorized under the main factors 

‘response times’ and ‘tasks’ were assigned nominal values. The Scaled AIC mean 
for the BLP group, i.e. -3.623, was used as the reference cell or intercept.
The results showed that both response times and tasks had a main effect on 

Scaled AIC, but there was no interaction. In particular, there was a significant 
main effect of response times, F (1, 63) = 271.87, p < .001. In regression terms, 
the coefficient for ELP predicted higher, i.e. inferior, Scaled AIC value, b = 0.37, 
SE = 0.02, t = 16.49, p < .001. In addition, there was a significant main effect 
of tasks, F (1, 63) = 275.42, p < .001. In regression terms, the coefficient for 
naming predicted a lower, i.e. better, Scaled AIC value, b = -0.37, SE = 0.02, 
t = -16.60, p < .001.
Figure 5 provides an overview of the main effects by means of a point and 

line plot. The intercept or reference cell refers to both the lowest ELP naming 
and highest BLP lexical decision value, i.e. -3.623. The lines are stacked 



	 Straipsniai / Articles� 287

Exploring Scaled AIC within English Closed Compounds

vertically because the ranges of Scaled AIC values for ELP lexical decision and 
BLP lexical decision were disjoint (see Table 4). On top of this, the lines are 
parallel because the absence of a ‘BLP naming’ group within tasks eliminated 
any interaction effects.
In summary, the BLP response times and the naming task persistently 

predicted better scaled AIC values, even after mutually controlling for relevant 
factors. These findings enhance the accuracy and effectiveness of the respective 
models.

FIGURE 5. Main effects plot for Scaled AIC

It should be noted that the main effects analysis presented in this section is 
more applicable to the source of response times than task performance because, 
as already mentioned, the combination ‘BLP naming’ was not available. This 
fact can limit the generalizability of the results beyond the specific samples.

6.3.	 Scaled AIC vs. control variables

In this section, the emphasis will be placed on the control variables compound 
length (in characters) and SUBTLEX-US frequency, i.e. the log compound 
frequency derived from the SUBTLEX-US corpus (Brysbaert, New 2009). 
Both variables were extensively used in Gagné et al.’s (2019) regression models.
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To detect the influence of compound length and compound frequency on 
Scaled AIC, the respective regression coefficients were recoded into ordinal 
values according to their positivity and significance level, see Table 6. The 
significance levels were mapped onto ordinal scales because they represented 
conventional cut-off points based on the exact significance values.

TABLE 6. Ordinal recoding chart for regression coefficients

Significance Positivity Ordinal values Description
p < .001 negative -3 large negative effect
p < .01 negative -2 moderate negative effect
p < .05 negative -1 small negative effect
p > .05 negative/positive 0 non-significant effect
p < .05 positive 1 small positive effect
p < .01 positive 2 moderate positive effect
p < .001 positive 3 large positive effect

In  Gagné et al.’s (2019) models, SUBTLEX-US frequency was always 
associated with negative (=latency-reducing) coefficients with a large effect, p < 
.001. Accordingly, all coefficients were recoded as -3, a value that was perfectly 
collinear with the outcome variable, Scaled AIC. For this reason, SUBTLEX-US 
frequency was excluded from the present analysis.
As for compound length, all significant regression coefficients from Gagné et 

al.’s (2019) models had a large positive (=latency-inducing) effect, p < .001. 
In contrast to the SUBTLEX-US variable, several non-significant coefficients 
showed up. Given these patterns, a categorical variable was created with the 
values ‘1’ for positive effect (=interference of compound length) and ‘0’ for no 
effect (=no interference of compound length). The resulting sample contained 
39 Scaled AIC values. The Pearson correlation test between compound length 
and Scaled AIC yielded a highly significant correlation coefficient of 0.51, p = 
.001, indicating a moderate-to-strong correlation between the two variables.
Compound length was included as a single independent variable in a linear 

regression model. It was found that the predicted Scaled AIC mean for no 
interference of compound length was 3.611 (=the intercept). The interference 
of compound length resulted in a higher (=inferior) value of -3.407 (b = 0.204, 
p = .001). Figure 6 below illustrates these patterns. In a nutshell, Scaled AIC 
deteriorates when compound length becomes relevant within models.
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FIGURE 6. Compound length and Scaled AIC

We conducted separate ANOVAs for response time source (ELP/BLP) and 
task performance (lexical decision/naming), taking into account compound 
length as a covariate. The primary objective was to identify disparities in 
means that were previously adjusted to accommodate the controlling effects of 
compound length.
(a) ANOVA for response time source. BLP was assigned the value ‘0’ and 

ELP was assigned the value ‘1’. The Pearson correlation test revealed a strong 
collinearity between response time source and compound length, r = 1 (N = 39). 
The following evidence supports our finding: First, the ELP group consistently 
showed significant positive correlations with compound length, indicating a 
large effect. Second, the BLP group consistently displayed non-significant 
correlations with compound length.17 Consequently, the predicted Scaled AIC 
mean for response time source was the same with or without compound length 
in the analysis (M = 3.407 in both cases). In summary, compound length did 
not have a significant effect on Scaled AIC when the response time source was 
included.
(b) ANOVA for task performance. Naming was assigned the value ‘0’ and 

lexical decision was assigned the value ‘1’. The Pearson correlation test revealed 
a negative correlation between task and compound length, indicating a moderate 
effect, r = -.5, p = .001 (N = 39). This result suggests that compound length is 
more relevant to naming than to lexical decision.

	 17	 It should be noted that 11 of the 13 BLP coefficients were negative.
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When considering task as the primary variable, compound length was a 
significant predictor of Scaled AIC, F (1, 145.030), p = .000. Similarly, when 
considering compound length as the primary variable, task was a significant 
predictor of Scaled AIC, F (1, 125.30), p = .000. The predicted Scaled AIC mean 
for task alone was significantly different from the predicted Scaled AIC mean 
when compound length was taken into account (3.584 vs. 3.203, respectively). 
Likewise, the predicted Scaled AIC mean for compound length alone (3.584) 
was significantly different from the predicted Scaled AIC mean when the task 
was taken into account (-3.23). Summarizing, in terms of covariate adjustment, 
both the lexical decision task and compound length predicted inferior models.

6.4.	 Scaled AIC vs. transparency norms

This section investigates the effect of regression coefficients for semantic 
transparency in Gagné et al. (2019) models on Scaled AIC. These regression 
coefficients were coded on three ordinal scales, each corresponding to one of 
the three morphological levels, i.e. compound, first constituent, and second 
constituent. The ordinal recoding chart can be found in Table 6.
Table 7 below displays the medians and ranges of the ordinally-transformed 

transparency coefficients for all three morphological levels. Τhe medians 
provide useful information about the central tendency and dispersion of ordinal 
values and can help inform analyses based on ordinal variables.

TABLE 7. Ordinally-transformed transparency coefficients: Medians and ranges

Median Minimum Maximum
Compound -3 -3 -1
First constituent 2 -3 3
Second constituent 0 -2 3

N = 18

As can be seen, the median for the compound was ‘-3’, the median for the 
first constituent was ‘2’, and the median for the second constituent was ‘0’. 
These findings suggest that in Gagné et al.’s (2019) models with SUBTLEX-US 
frequency, transparency for the compound was associated with a large 
negative effect (shorter response times), transparency for the first constituent 
was associated with a moderate positive effect (longer response times), and 
transparency for the second constituent did not have a significant effect or had 
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an uncertain role. The higher transparency ratings for the second constituent, 
reported by Gagné et al. (ibid.), suggest an inherent bias favouring it, leading to 
the overall transparency of the compound being dependent on the transparency 
of the first constituent. In this context, the positive, latency-inducing, median 
for the first constituent indicates its mediating, perhaps reference-establishing, 
role in this relationship (see also section 1). It remains to be demonstrated 
which are the semantic functions that sufficiently represent, in processing terms, 
the inherent bias of the second constituent.18
The research question to be addressed now is whether the positivity and 

significance level of transparency coefficients influence Scaled AIC.  Our 
method primarily aims at detecting overfitting effects. As Daniel J. Navarro 
& Jay I. Myung (2005) argue, overfitting occurs when “a complex model with 
many parameters and highly nonlinear form can often fit data better than a 
simple model with few parameters even if the latter generated the data” 
(Navarro, Myung 2005: 1240). Accordingly, a large number of parameters have 
the potential to capture noise or unique characteristics of the available data but 
may hinder the model’s ability to generalize to new data. AIC mitigates the issue 
of overfitting by introducing a penalty on the inclusion of numerous parameters 
in a model, see the ‘+2k’ part of the AIC equation in section 2.
Regarding the analysis to follow, it is postulated that models exhibiting higher 

(=inferior) Scaled AIC values may possess significant, systematically derived, 
coefficients, i.e. coefficients that are relevant according to the LADEC dataset 
alone. In this context, our conjecture suggests that a contrasting trend might 
emerge in the connection between transparency and Scaled AIC, as compared 
to the indication provided by the medians in Table 7.
In particular, lower (=better) Scaled AIC values may be associated with 

(a)  positive coefficients (longer response times) concerning the whole 
compound, (b) negative coefficients (shorter response times) concerning the 
first constituent, and (c) positive or negative coefficients (longer or shorter 
response times, respectively) concerning the second constituent. It should be 
noted that, regarding the second constituent, the median in Table 7 suggests no 
effect.
To answer the research question, two non-parametric measures will be 

employed, i.e. the Kruskal-Wallis test and the Jonckheere-Terpstra test. The 
Kruskal-Wallis test, also known as the ‘H test’, is a non-parametric test based on 

	 18	 In Charitonidis (2024) it is argued that both hyponymy and context concreteness for the second 
constituent are significant semantic predictors in lexical decision and naming. The analysis 
presented therein shows that including both of these predictors results in an improvement in 
Scaled AIC and R2 as compared to models that omit either of these variables.



Chariton Charitonidis

292	 Ac ta L ingu i s t ic a L ithuan ica XC

the chi-square distribution. It requires that the dependent variable be ordinal 
or continuous. This test is designed to determine whether there are significant 
differences between the medians of two or more groups and is used as an 
alternative to one-way ANOVA. Concerning the procedure, the values of the 
continuous dependent variable, i.e. Scaled AIC, were ordered from lowest to 
highest and the scores were assigned ranks. The resulting ranks were entered 
back into the groups of significance level (the independent variable) and the 
ranks for each group were summed. The formula for calculating ‘H’ involved, 
among others, squaring the sum of ranks for each group and then dividing this 
value by sample size.19 Tables 8–10 contain the input data considered and the 
sum of ranks for each group.20

TABLE 8. Compound

Significance levels N Sum of Ranks
Scaled 
AIC

1 – small negative effect 1 2
2 – moderate negative effect 5 46
3 – large negative effect 12 123

Total 18

TABLE 9. First constituent

Significance levels N Sum of Ranks
Scaled 
AIC

1 – large positive effect 6 59
2 – moderate positive effect 4 34
3 – small positive effect 1 3
4 – no effect 1 2
5 – small negative effect 1 10
6 – moderate negative effect 1 11
7 – large negative effect 4 52

Total 18

	 19	For the rest of calculations see Field (2009: 561–562).
	 20	 In all three tables, the total sum of ranks is approximately 171. It is equal to the sum of the integers 

from 1 to 18, see sample size (N).
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TABLE 10. Second constituent

Significance levels N Sum of Ranks
Scaled 
AIC

1 – large positive effect 6 59
2 – small positive effect 1 14
3 – no effect 8 59
4 – small negative effect 1 18
5 – moderate negative effect 2 21

Total 18

Before delving into the results of the Kruskal-Wallis (H) test, it is important 
to note that this test does not provide information about the specific differences 
between individual groups. To address this issue, the Jonckheere-Terpstra (JT) 
test was additionally employed. This test provided information about whether 
the medians of the groups increased or decreased in the order specified by 
the coding (=grouping) variable, specifically from large positive effect to large 
negative effect. Regarding methods, the JT statistic was converted into a z-score. 
A positive z-value indicated a trend of ascending medians, that is the medians 
increased (=higher/inferior Scaled AIC) as the values of the coding variable 
increased. A negative z-value indicated a trend of descending medians, that is 
the medians decreased (=lower/better Scaled AIC) as the values of the coding 
variable increased. In the following, the results of the Kruskal-Wallis (H) and 
Jonckheere-Terpstra (JT) tests are given jointly.
(a) Scaled AIC for the compound was not significantly affected by significance 

level, as determined by the Kruskal-Wallis test (H (2) = 2.226, p > .05). A trend 
of ascending medians was found confirming our overfitting hypothesis, see the 
negative median for the compound in Table 7. This trend, however, was not 
statistically significant according to the Jonckheere-Terpstra test (JT = 50, z = 
1.064, p > .05).
(b) Scaled AIC for the first constituent was not significantly affected by 

significance level, as determined by the Kruskal-Wallis test (H (6) = 5.427, 
p > .05). A trend of ascending medians was found rejecting our overfitting 
hypothesis, see the positive median for the first constituent in Table 7. This 
trend, however, was not statistically significant according to the Jonckheere-
Terpstra test (JT = 70, z = 0.549, p > .05).
(c) Scaled AIC for the second constituent was not significantly affected by 

significance level, as determined by the Kruskal-Wallis test (H (4) = 4.607, p > 
.05). A trend of ascending or descending medians was not observed, rejecting 
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our overfitting hypothesis. In particular, the z-statistic of the Jonckheere-
Terpstra test was essentially zero, in accordance with the zero median for the 
second constituent in Table 7 (JT = 54, z = 0.041, p > .05).
Summarizing, it can be inferred that the significance level of the transparency 

coefficients in Gagné et al.’s (2019) models with SUBTLEX-US frequency does 
not affect the magnitude of Scaled AIC. This finding indirectly supports the 
quality of Gagné et al.’s (2019) models with transparency predictors, specifically 
indicating that the overfitting hypothesis for these models is not tenable. A 
limitation of the present study is the small sample size used, with N = 18. To 
confirm our findings, more research is needed using a wider range of Scaled 
AIC values.
To ensure clarity and completeness in presenting our research outcomes, we 

have incorporated a dedicated section focused on summarizing the key findings 
of our study. For this comprehensive overview, please continue to Section 7.

7.	 KEY FINDINGS

Table 11  below presents a comprehensive analysis of model performance 
and relevant variables in the context of lexical decision and naming tasks, 
based on the findings of Gagné et al. (2019). Each section of the table delves 
into specific subjects, revealing which models are most effective. The ANOVA 
and the Kruskal-Wallis/Jonckheere-Terpstra tests (sections 6.3 and 6.4) were 
applied after assigning nominal (ordinal or categorical) values to the regression 
coefficients from Gagné et al’s (2019) models. For details on the special tests 
applied, please refer to the respective sections.

TABLE 11. 	 Scaled AIC within English closed compounds: Comprehensive analysis 
of model performance in lexical decision and naming tasks (Gagné et al. 
2019)

Subjects Statistics Evaluation Section

Model categories Descriptives
Normality tests

ELP lexical decision
BLP lexical decision
ELP naming

NPAR/~
PAR/✓
PAR/✓

6.1

Response time 
source
Lexical processing 
task

Main effects ELP lexical decision
BLP lexical decision
ELP naming

~
✓
✓ 6.2
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Subjects Statistics Evaluation Section

Control variables ANOVA Compound 
frequency
Compound length

✓
 
~

6.3

Semantic 
transparency

Kruskal-Wallis 
Jonckheere-
Terpstra

First constituent
Second constituent
Compound

NOF/ns
NOF/ns
NOF/ns

6.4

PAR: parametric data | NPAR: non-parametric data | ✓: better models 
(lower AIC) ~: inferior models (higher AIC) | NOF/ns: no overfitting/non-
significant test

8.	 DISCUSSION

Previous research by Charitonidis (2022, 2024) has demonstrated that 
Scaled AIC is a reliable goodness-of-fit measure that can be employed in model 
selection, perhaps in cooperation with other measures such as the Wald test (see 
section 3). With reference to Gagné et al.’s (2019) multiple-regression models 
with SUBTLEX-US frequency, the present analysis introduced additional 
properties of the Scaled AIC measure. While valid concerns have been raised 
regarding the comparison of models fitted on different sample sizes using 
information criteria (see section 2), the findings of this study suggest that in 
certain contexts, Scaled AIC can indeed be a valuable tool for assessing model 
fit and hierarchizing regression models. Our research has demonstrated that 
Scaled AIC is responsive to experimental design, response time sources, and 
specific tasks. However, it is essential to recognize that the applicability of 
Scaled AIC may be context-dependent, and its utility should be evaluated on 
a case-by-case basis.
Before proceeding to the primary findings of this paper, it is important to 

address the research questions set up in section 4.
1. The distributions of Scaled AIC values, along with combinations of 

different sources of response times and processing tasks, suggest that Scaled 
AIC effectively identifies the presence or absence of well-defined underlying 
factors in experimental design and statistical modelling. In this context, BLP 
lexical decision and ELP naming exhibited stronger predictive power for Scaled 
AIC even under controlled conditions.
2. Compound frequency was unexceptionally a negative predictor of Scaled 

AIC, always indicating a large effect. ELP lexical decision consistently showed 



Chariton Charitonidis

296	 Ac ta L ingu i s t ic a L ithuan ica XC

significant positive correlations with compound length predicting higher 
(=inferior) Scaled AIC values. BLP lexical decision consistently showed non-
significant correlations with compound length. Both lexical decision and 
compound length predicted inferior models in covariate adjustment.
3. The positivity and the significance level of transparency coefficients in 

Gagné et al.’s (2019) models did not affect the magnitude of Scaled AIC. This 
finding implies that Gagné et al.’s (2019) models with transparency predictors 
do not introduce overfitting bias.
By referencing specific sections of the analyses, the primary findings of this 

study can be summarized as follows:
In Section 6.1, our analysis focused on the comparison between Scaled AIC 

values across various model categories. Even after attempting the transformations 
‘natural logarithm’ and ‘square root’ on the absolute values, the overall Scaled 
AIC sample did not conform to a normal distribution. Similarly, the ELP 
lexical decision models showcased a non-parametric distribution of their Scaled 
AIC values. On the contrary, the data related to BLP lexical decision and ELP 
naming followed a normal distribution pattern.
In  Section 6.2, our focus shifted to examining the relationship between 

Scaled AIC and (a) the sources of response times and (b) task performance. 
Interestingly, the ranges of Scaled AIC values for the ELP and BLP lexical 
decision models did not overlap, signifying their distinctiveness. The test 
results revealed significant main effects of both response time source and task 
performance on Scaled AIC. Notably, the predictive capability of Scaled AIC 
was better for models associated with the BLP lexical decision times and the 
naming task. These findings contribute to the precision and efficacy of the 
respective models significantly.
In Section 6.3, our exploration delved into the relationship between Scaled 

AIC and the control variables ‘compound frequency’ and ‘compound length’. 
Compound frequency was excluded from the analysis because it was perfectly 
collinear with Scaled AIC. On the other hand, a decline in Scaled AIC values 
was observed when compound length became a relevant factor within models. 
Concomitantly, compound length was most relevant for the naming task.
In terms of covariate adjustment, both the lexical decision task and compound 

length were predictive of inferior models.
In Section 6.4, our focus was placed on the relationship between Scaled AIC 

and semantic transparency. The research question was whether the positivity 
and the significance level of transparency coefficients in Gagné et al.’s (2019) 
models had an impact on Scaled AIC. The primary goal of our method was 
to detect potential overfitting effects. We postulated that models with inferior 
Scaled AIC values might possess significant coefficients that hold relevance 
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according to the LADEC dataset alone. While we observed a trend of increasing 
(=inferior) Scaled AIC values for a cluster of significant negative coefficients at 
the compound level – aligning with our overfitting hypothesis – the Jonckheere-
Terpstra test showed that this trend did not achieve statistical significance.
In conclusion, the exploration of different parameters using Scaled AIC as a 

dependent variable has illuminated the diverse ways in which model categories, 
response time source, processing tasks, control variables, and semantic 
transparency impact the goodness-of-fit of models. By recognizing the nuanced 
relationships among these elements, researchers are better equipped to make 
informed decisions in model selection, adjustments, and interpretation.
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Anglų kalbos uždarųjų junginių  
(sudurtinių žodžių) skalės AIC tyrimas

SANTRAUKA

Šiame tyrime nagrinėjamos modifikuotos Akaikės informacijos kriterijaus, pavadinto 
skalės kriterijumi, t. y. AIC, kaip tinkamumo rodiklio, padalinto iš imties dydžio, varianto 
ypatybės. Tyrimo objektas  – 66  daugialypės regresijos modeliai, susiję su uždarųjų 
(sudurtinių) anglų kalbos žodžių junginių, paimtų iš Gagné’ės ir kitų (2019) Anglų kalbos 
sudurtinių žodžių (junginių) didžiosios duomenų bazės (angl. LADEC), apdorojimu.
Toliau pateikiami išsamios analizės rezultatai:
1.	 Modelių kategorijų modeliai pasižymi nevienareikšmiais rezultatais. Britų kalbos 

žodyno projekto (angl. BLP) leksinių sprendimų modeliai ir Anglų kalbos žodyno 
projekto (angl. ELP) įvardijimo modeliai veikia geriau (tai rodo mažesnis AIC), 
palyginus su Anglų kalbos žodyno projekto (angl. ELP) leksinių sprendimų 
modeliais.
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2.	 Laiko šaltinio ir leksikos apdorojimo užduočių atsakymas atskleidžia reikšmingus 
pagrindinius skalės AIC rezultatus. Britų kalbos žodyno projekto leksinių 
sprendimų modeliai ir Anglų kalbos žodyno projekto įvardijimo modeliai veikia 
gerai, o pastarojo projekto leksinių sprendimų modeliai yra mažiau veiksmingi.

3.	 Įvertinus kontrolinius kintamuosius, tokius kaip junginių dažnumas ir junginių 
ilgis, matyti, kad modelių rezultatyvumas skiriasi. Junginių dažnumas yra stiprus 
veiksnys (parodo didesnis produktyvumas), o sudėtinio ilgio modelių prognozės 
blogesnės.

4.	 Kalbant apie pirmosios ir antrosios žodžių junginių sudedamųjų dalių, taip pat ir 
apie junginių semantinį skaidrumą, modeliai nerodo per didelio suderinamumo. 
Tai parodo, kad semantinis skaidrumas nesumažina modelių galėjimo apibendrinti 
naujus duomenis.
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